If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-35x+32=0
a = 3; b = -35; c = +32;
Δ = b2-4ac
Δ = -352-4·3·32
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-29}{2*3}=\frac{6}{6} =1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+29}{2*3}=\frac{64}{6} =10+2/3 $
| 3(2x-7)=9(5+x) | | -1/4x-3=-3/2x | | 3m+1=3m+7 | | (4/5)x=1. | | 7x÷10=44 | | x^2+0.97x-0.108=0 | | 0.24(10,000)-0.5y=0.05(y+10,000) | | (2x+5)(x+6)=(4x-9)(2x+5) | | 3+y+3=0 | | 18/x=-9x+33 | | 12=0.2(40+v) | | 2/3w+7/3w=-1/5-6/6 | | 2x-7+×=35 | | 400–3p=–100+2p | | 0=4x^2+8x+8 | | -(7x-2)+4x-4=-2 | | (1)/(3)(x+4)+(5)/(6)(x+4)=x-2 | | 81=11a | | 12-(x-2)^2=3 | | 1/3(x+4)+5/6(x+4)=x-2 | | 2x+1+6=20-3x | | 3x+2/3x=33 | | 5x+6x-3+2=10 | | 5x-12=4(7x-6) | | 1/2(2x-4)=3/4(4x-8) | | x^2-24x-256=0 | | 2x-6=3x-6-x | | 2/7u+4/7=-2/5-4/5 | | (2x-5)²=49 | | A+3b=20 | | v/8-7=-8 | | -57=9w-3 |